Binghamton University Research News
  • News
  • Features
  • Faculty
  • Students
  • Videos
  • Photos
  • Subscribe

Origami ninja star inspires battery design

By Rachel Coker • Jun 7, 2016 • News•   

A new disposable battery that folds like an origami ninja star could power biosensors and other small devices for use in challenging field conditions, a Binghamton University engineer says.

Seokheun “Sean” Choi and two of his students developed the device, a microbial fuel cell that runs on the bacteria available in a few drops of dirty water. They report on their invention in a new paper published online in the journal Biosensors and Bioelectronics.

choi_origamiChoi previously developed a paper-based origami battery. The first design, shaped like a matchbook, stacked four modules together. The ninja star version, which measures about 2.5 inches wide, boasts increased power and voltage, with eight small batteries connected in series.

“Last time, it was a proof of concept. The power density was in the nanowatt range,” says Choi, an assistant professor of electrical and computer engineering. “This time, we increased it to the microwatt range. We can light an LED for about 20 minutes or power other types of biosensors.”

Paper-based biosensors include pregnancy tests and HIV tests. The sensitivity of such tests is limited, Choi says, and a battery like his could allow the use of more sophisticated fluorescent or electrochemical biosensors in developing countries. “Commercially available batteries are too wasteful and expensive for the field,” he says. “Ultimately, I’d like to develop instant, disposable, accessible bio-batteries for use in resource-limited regions.”

The new design folds into a star with one inlet at its center and the electrical contacts at the points of each side. After a few drops of dirty water are placed into the inlet, the device can be opened into a Frisbee-like ring to allow each of the eight fuel cells to work. Each module is a sandwich of five functional layers with its own anode, proton exchange membrane and air-cathode.

Choi’s original matchbook-sized battery could be produced for about 5 cents. The new ninja star device is more expensive — roughly 70 cents — in part because it uses not only filter paper but also carbon cloth for the anode as well as copper tape. The team’s next goal is to produce a fully paper-based device that has the power density of the new design and a lower price tag.

Choi prides himself on involving students in his research, and this paper represents a special triumph for co-author Landen Kwan, who worked on the project during a National Science Foundation Research Experiences for Undergraduates program at Binghamton in the summer of 2015. Kwan, then a student at Queensborough Community College, is now enrolled at Stony Brook University. Binghamton doctoral student Arwa Fraiwan also contributed to the study, which was funded by the National Science Foundation.

Like this article? Please share!
batterybiobatterybiosensorenergyengineeringfuel cellsmart energy
Physicists gain new view of superconductor
Faculty author updates classic novel

You Might Also Like

  • Binghamton-led battery initiative named federal Tech Hub

  • Engineer takes top honors in Art of Science contest

  • University, UHS partner on $2.6M MRI scanner

  • Research Days return in April

    Research in the news

    • Modern medicine traces its scientific roots to the Middle Ages

    • Are people born with good balance?

    • Earth to be hit by ‘widespread pest outbreaks’ — and it’s our fault

    • For EV batteries, lithium iron phosphate narrows the gap with nickel, cobalt

    • The revolt of the other mothers

    Recent Comments

    • Resume Format on Computer program spots narcissistic execs
    • Ann Walker on Wasps may provide climate change insights
    • Dejen Habtom on Ancient seawater may yield climate change insights
    • Don Franck on Binghamton battery project wins $500,000; will compete for $100M
    • Dave on Anechoic chamber puts sound to the test
    Binghamton University Binghamton University

    © 2025 Binghamton University State University of New York
    Images used throughout this site are copyright protected. For permission and terms of use, visit the about us page